MATH3210 - SPRING 2024 - SECTION 001

HOMEWORK 2

Problem 1. Consider the expression $x=.99999 \ldots$, which we think of as a decimal expansion. That is, if $x_{n}=\sum_{k=1}^{n} 9 \cdot 10^{-k}$, we think of it as

$$
x=\lim _{n \rightarrow \infty} .9999 \ldots 9=\lim _{n \rightarrow \infty} x_{n}
$$

Show that $x=1$. [Hint: First show that $x_{n}+10^{-n}=1$ by induction]
Solution. We first show that $x_{n}+10^{-n}=1$ by induction. When $n=1$, this follows because $x_{1}=.9$ and $10^{-1}=.1$. Assume $x_{n}+10^{-n}=1$, and consider x_{n+1}. Then

$$
\begin{aligned}
x_{n+1}+10^{-(n+1)}= & \left(\sum_{k=1}^{n+1} 9 \cdot 10^{-k}\right)+10^{-(n+1)} \\
& =x_{n}+9 \cdot 10^{-(n+1)}+10^{-(n+1)}=x_{n}+10 \cdot 10^{-(n+1)}=x_{n}+10^{-n}=1
\end{aligned}
$$

Therefore, by induction $x_{n}+10^{-n}=1$ for all n.
Next, we show that $\lim _{n \rightarrow \infty} 10^{-n}=0$. Indeed, first note that $n \leq 10^{n}$ for all $n \in \mathbb{N}$. We show this again by induction. Since $1 \leq 10$, this is clearly true for $n=1$. Then if $n \leq 10^{n}$, $n+1 \leq 10^{n}+1 \leq 10^{n}+9 \cdot 10^{n}=10^{n+1}$. Now, since $n \leq 10^{n}$,

$$
0 \leq 10^{-n} \leq 1 / n
$$

Since $0 \rightarrow 0$ and $1 / n \rightarrow 0$, it follows that $10^{-n} \rightarrow 0$ by the squeeze theorem. Then, by the limit arithmetic theorem, it follows that

$$
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} 1-10^{-n}=1-0=1
$$

Remark 1. It would be okay to omit the blue section in a solution, but I include it for clarity and extra exposition.

Problem 2. Consider the following property for a set $A \subset \mathbb{R}$.
(N) If $x \in A$, then there exists some $\varepsilon>0$ such that if $|x-y|<\varepsilon$, then $y \in A$.

Show that if A is a bounded subset of \mathbb{R} with property (N), then $\sup A \notin A$.
Solution. We proceed by contradiction. Assume that $z=\sup A, z \in A$, and A has property (N). Then since A has property (N) and $z \in A$, there exists some $\varepsilon>0$ such that if $|x-z|<\varepsilon, x \in A$. Setting $x=z+\varepsilon / 2$, we see that $|x-z|<\varepsilon$. so $z+\varepsilon / 2 \in A$. This contradicts that z is an upper bound of A. Hence $\sup A \notin A$.

Problem 3. Show that if $\left(a_{n}\right)$ is increasing, then for every $N \in \mathbb{N}$, if $n \geq N, a_{n} \geq a_{N}$.
Solution. Fix $N \in \mathbb{N}$. We will show if $n \geq N$, then $a_{n} \geq a_{N}$ by induction. The base case is $n=N$, where $a_{n} \geq a_{N}$ is easily verified. Assume that $a_{n} \geq a_{N}$. Then $a_{n+1} \geq a_{n}$ by the increasing assumption, so $a_{n+1} \geq a_{n} \geq a_{N}$. Hence, the result follows by induction.

Problem 4. Assume $\left(a_{n}\right)$ is increasing. Show that $\left(a_{n}\right)$ is not bounded above if and only if $\left(a_{n}\right)$ diverges to ∞.
Solution. We first show that if $\left(a_{n}\right)$ is not bounded, then it diverges to ∞. Fix $M \in \mathbb{R}$. Since a_{n} is not bounded, there exists $N \in \mathbb{N}$ such that $a_{N} \geq M$. Then if $n \geq N, a_{n} \geq a_{N}$ by the previous problem. It follows that $a_{n} \geq M$. Since M was arbitrary, $\left(a_{n}\right)$ diverges to ∞.

Now, assume that $\left(a_{n}\right)$ diverges to ∞. Then for every $M \in \mathbb{R}$, there exists $N \in \mathbb{N}$ such that whenever $n \geq N, a_{n} \geq M$. In particular, $a_{N} \geq M$. Therefore, since M was arbitrary, $\left(a_{n}\right)$ is unbounded.

